πŸ‘¨β€πŸ”§
The Ops Compendium
search
⌘Ctrlk
πŸ‘¨β€πŸ”§
The Ops Compendium
  • The Ops Compendium
  • Definitions
  • ML & DL Compendiumarrow-up-right
  • MLOps
    • MLOps Intro
    • MLOps Teams
    • MLOps Literature
    • MLOps Course
    • MLOps Patterns
    • ML Experiment Management
    • ML Model Monitoring & Alerts
    • MLOps Tools
    • MLOps Deployment
    • Feature Stores & Feature Pipelines
    • Model Formats
    • AI As Data
    • MLOps Interview Questions
    • ML Architecture
  • DataOps
    • SQL
    • Tools
    • Databases
    • Database Modeling
    • Data Analytics
    • Data Engineering
    • Data Pipelines
    • Data Strategy
    • Data Vision
    • Data Teams
    • Data Catalogs
    • Data Governance
    • Data Quality
    • Data Observability
    • Data Program Management
    • Data KPIs
    • Data Mesh
    • Data Contract
    • Data Product
    • Data Engineering Questions & Training
    • Data Patterns
    • Data Architecture
    • Data Platforms
    • Data Lineage
  • DevOps
    • DevOps Strategy
    • DevOps Tools
    • DevOps Courses
  • DevSecOps
    • Definitions
    • Tools
    • Concepts
  • Architecture
    • Problems
    • Development Concepts
    • System Design
gitbookPowered by GitBook
block-quoteOn this pagechevron-down
githubEdit
  1. DataOps

Data Platforms

hashtag
Databricks

  1. Databricks is ACIDarrow-up-right

  1. DB Learning Library

    1. Free coursesarrow-up-right

    2. Docs Optimization recommendationsarrow-up-right

    3. Comprehensive Guide to Optimize Databricks, Spark and Delta Lake Workloadsarrow-up-right

    4. Vector Searcharrow-up-right

    5. DB for MLarrow-up-right

    6. DB for Data Engineeringarrow-up-right

  2. (good) Introduction & Tutorialarrow-up-right - cluster / notebook / table / SQL / DataFrame / connections

  3. must know 7 conceptsarrow-up-right

  1. RDD vs Dataframe vs Dataset

    1. 2016 official blog postarrow-up-right

    2. linkedin blog postarrow-up-right

    3. comparison on youtubearrow-up-right

    4. RDDs vs. Dataframes vs. Datasets – What is the Difference and Why Should Data Engineers Care?arrow-up-right

  2. Optimizations

    1. Optimization recommendations on Databricksarrow-up-right

    2. Comprehensive Guide to Optimize Databricks, Spark and Delta Lake Workloadsarrow-up-right

    3. How I Use Caching in Databricks to Increase Performance and Save Costsarrow-up-right

    4. Why and How: Partitioning in Databricksarrow-up-right

  3. Best Practices

    1. official docsarrow-up-right

PreviousData Architecturechevron-leftNextData Lineagechevron-right

Last updated 1 year ago

Was this helpful?

Was this helpful?